MATEMATİK ÖZEL DERS - SIFIR SAYISI
  ANA SAYFA
  ÖZEL DERS BAŞVURU
  HAKKIMDA
  NEDEN ÖZEL DERS?
  MATEMATİĞİN FAYDALARI
  MATEMATİK KORKUSU NASIL YENİLİR?
  BAŞARILI OLMAK İÇİN NASIL ÇALIŞMALIYIZ?
  TEST ÇÖZME TEKNİKLERİ
  MATEMATİK TARİHÇESİ
  MATEMATİK ALİMLERİ
  MATEMATİK SÖZLÜĞÜ
  MATEMATİK FELSEFESİ
  MATEMATİK KARİKATÜRLERİ
  MATEMATİK SEMBOLLERİ
  MATEMATİK FORMÜLLERİ
  GEOMETRİ FORMÜLLERİ
  İLGİNÇ MATEMATİKSEL BİLGİLER
  VÜCUDUMUZDAKİ MATEMATİK
  Pİ SAYISI
  SIFIR SAYISI
  MATEMATİK PÜF NOKTALARI
  MATEMATİK ZEKA SORULARI
  MATEMATİĞİN AYDINLIK DÜNYASI BELGESELLERİ İZLE
  MATEMATİĞİN HİKAYESİ BELGESELLERİ İZLE
  MATEMATİKSEL HAFIZA TEKNİKLERİ İZLE
  VERİMLİ DERS ÇALIŞMA TEKNİKLERİ İZLE
  MİMAR SİNAN BELGESELİ İZLE
  MATEMATİK SORU VE CEVAP
  MATEMATİK VİDEOLARI
  MATEMATİK DOSYA İNDİR
  6. SINIF MATEMATİK ÖZEL DERS
  7. SINIF MATEMATİK ÖZEL DERS
  8. SINIF MATEMATİK ÖZEL DERS
  9. SINIF MATEMATİK ÖZEL DERS
  10. SINIF MATEMATİK ÖZEL DERS
  11. SINIF MATEMATİK ÖZEL DERS
  12. SINIF MATEMATİK ÖZEL DERS
  AÖF ÖZEL DERS
  SBS ÖZEL DERS
  SBS PUAN HESAPLA
  YGS ÖZEL DERS
  YGS PUAN HESAPLA
  LYS ÖZEL DERS
  LYS PUAN HESAPLA
  DGS ÖZEL DERS
  DGS PUAN HESAPLA
  KPSS ÖZEL DERS
  KPSS PUAN HESAPLA
  ALES ÖZEL DERS
  ALES PUAN HESAPLA
  FAYDALI LİNKLER
  KÜLTÜR - SANAT
  ANKETLER
  MATEMATİK FORUM
  MATEMATİK (Boş ders şarkısı)
  GÜZEL SÖZLER
  ZİYARETÇİ DEFTERİ
  Sayaç Ayrıntıları

Sıfır Sayısı

 
  
   Sıfır:
   Sıfır sayısının birbirinden bağımsız olarak hem Hindistan’da hem de Maya’lar tarafından icat edildiği sanılıyor. Hindistan’da kullandığımıza benzeyen bir kesirli sistem kullanılmaktaydı, ancak İ.Ö. 3. yüzyıla kadar sıfır yerine boşluk bırakıyorlardı. Boşluk, sayıları ayırmak için de kullanıldığından oldukça akıl karıştırıcıydı, dolayısıyla sıfır yerine nokta koymaya başladılar.

   Bizim bildiğimiz sıfırın sıfır olarak kullanılmaya başlaması ise İ.S. 7. yüzyıla rastlar. Mayaların İ.S. 3. yüzyılda takvimleri için sıfırı icat etmişler.Sıfırın Avrupa uygarlığına gelmesi Araplar tarafından İ.S. 800’lü yıllarda olmuştur. Yunanlı ve Romalılar sıfır kullanmıyorlardı çünkü hesaplamalarını abaküs üzerinde yapıyorlardı. Sıfır sözcüğü, Arapça “sifr” den gelmektedir.  


Sıfır Rakamının Kronolojik Gelişimi
M.Ö. 3000 yılları : Eski Mısırlılar, onluk sistemi bilmediklerinden, sıfır anlamını ifade eden bir sembol (işaret) kullanmamışlardır.
M.Ö. 700-500 yılları : Mezopotamyalılar, sadece astronomi metinlerinde, sıfır anlamına gelecek, özel bir işareti sürekli olarak kullanmışlardır.
M.S. 2. yüzyıl : Eski Yunan'da, Batlamyos'un astronomi metinlerinde, Yunan alfabesinde görülen, içi boş anlamını ifade eden "0" şeklinde bir harf kullanmışlardır. Ancak, matematiklerinde, bu harfi (işareti) kullanmadıklarını, kaynaklar açık olarak belirtmektedir.
M.S. 400 yılları : Eski Hint Dünyasında, ilk defa, bugünkü ifadeyle sıfır anlamına gelen, "0" ve "." şeklinde işaret (sembol) görülmeye başlamıştır.
M.S. 632 : Eski Hint alimi Brahmagupta'nın astronomi ile ilgili olan Siddhanta adlı eserinde, dokuz ayrı ve sıfır rakamı ile hesap yapmayı gösteren kaideler belirtilmiştir.
M.S. 830 : İslam Dünyasının önde gelen matematik alimi Harezmi tarafından, dokuz ayrı rakam dahil sıfır rakamı ile birlikte aritmetik işlemlerin nasıl yapılacağı açık olarak gösterilmiştir.
M.S. 1100 yılları : Avrupa matematik dünyasında, yaygın olarak kullanılmaya başlar.

  
  Sıfır neden çifttir?   
   Bu soruya cevap vermeden önce tek ve çift sayı kavramı üzerinde durmamız gerekiyor. Matematikte kavramlar söz konusu olduğunda tahmin edebileceğinizden daha fazla farklı fikirle karşılaşırsınız. Ancak bu tek ve çift sayı konusunda matematikçilerin büyük bir kesiminin ortak bir kararı olduğunu görebiliriz.

Tanım şu şekilde yapılmıştır: İki ile bölündüğünde sıfır kalanını veren sayılara çift sayılar, bir kalanını veren sayılara da tek sayılar denir. Bu tanıma göre iki ile bölündüğünde sıfır kalanını veren sıfır sayısı bir çift sayıdır.

 

 

 

Bugün 143863 ziyaretçi (318414 klik) kişi burdaydı!
=> Sen de ücretsiz bir internet sitesi kurmak ister misin? O zaman burayı tıkla! <=