MATEMATİK ÖZEL DERS - Özdeşlikler
  ANA SAYFA
  ÖZEL DERS BAŞVURU
  HAKKIMDA
  NEDEN ÖZEL DERS?
  MATEMATİĞİN FAYDALARI
  MATEMATİK KORKUSU NASIL YENİLİR?
  BAŞARILI OLMAK İÇİN NASIL ÇALIŞMALIYIZ?
  TEST ÇÖZME TEKNİKLERİ
  MATEMATİK TARİHÇESİ
  MATEMATİK ALİMLERİ
  MATEMATİK SÖZLÜĞÜ
  MATEMATİK FELSEFESİ
  MATEMATİK KARİKATÜRLERİ
  MATEMATİK SEMBOLLERİ
  MATEMATİK FORMÜLLERİ
  GEOMETRİ FORMÜLLERİ
  İLGİNÇ MATEMATİKSEL BİLGİLER
  VÜCUDUMUZDAKİ MATEMATİK
  Pİ SAYISI
  SIFIR SAYISI
  MATEMATİK PÜF NOKTALARI
  MATEMATİK ZEKA SORULARI
  MATEMATİĞİN AYDINLIK DÜNYASI BELGESELLERİ İZLE
  MATEMATİĞİN HİKAYESİ BELGESELLERİ İZLE
  MATEMATİKSEL HAFIZA TEKNİKLERİ İZLE
  VERİMLİ DERS ÇALIŞMA TEKNİKLERİ İZLE
  MİMAR SİNAN BELGESELİ İZLE
  MATEMATİK SORU VE CEVAP
  MATEMATİK VİDEOLARI
  MATEMATİK DOSYA İNDİR
  6. SINIF MATEMATİK ÖZEL DERS
  7. SINIF MATEMATİK ÖZEL DERS
  8. SINIF MATEMATİK ÖZEL DERS
  => Ayna ve Dönme Simetrisi Konu Anlatım
  => ÖRÜNTÜLER, ÖTELEME VE SÜSLEMELER
  => Koordinat Düzleminde Yansıma, Öteleme ve Dönme
  => STANDART SAPMA NEDİR?
  => 8.SINIF SBS MATEMATİK SORU TAHMİNLERİ
  => Aritmetik dizi ve Geometrik dizi
  => Özdeşlikler
  => Çarpanlarına Ayırma
  => EULER FORMÜLÜ
  9. SINIF MATEMATİK ÖZEL DERS
  10. SINIF MATEMATİK ÖZEL DERS
  11. SINIF MATEMATİK ÖZEL DERS
  12. SINIF MATEMATİK ÖZEL DERS
  AÖF ÖZEL DERS
  SBS ÖZEL DERS
  SBS PUAN HESAPLA
  YGS ÖZEL DERS
  YGS PUAN HESAPLA
  LYS ÖZEL DERS
  LYS PUAN HESAPLA
  DGS ÖZEL DERS
  DGS PUAN HESAPLA
  KPSS ÖZEL DERS
  KPSS PUAN HESAPLA
  ALES ÖZEL DERS
  ALES PUAN HESAPLA
  FAYDALI LİNKLER
  KÜLTÜR - SANAT
  ANKETLER
  MATEMATİK FORUM
  MATEMATİK (Boş ders şarkısı)
  GÜZEL SÖZLER
  ZİYARETÇİ DEFTERİ
  Sayaç Ayrıntıları

Konu: Özdeşlikler

Matematikte birçok denklem karşınıza çıkmıştır.Bunlardan bazıları gerçekten özeldir.

  1. Örneğin; x-9=15 cebirsel ifadesini düşünelim.

Bu cebirsel ifadede eşitliğin sol tarafının sağ tarafına eşit çıkması için x yerine 24 yazmalısınız. İsterseniz deneyelim.

  • x yerine 24 yazarsak

x-9=15

24-9=15

15=15

sol taraf sağ tarafa eşit çıktı.

  • x yerine 15 koyalım.

x-9=15

15-9=15

6=15 çıkar.

eşitlik doğru olmadı.

Sizler de denerseniz 9 haricinde hiçbir sayı için eşitliğin sağ ve sol tarafı birbirine eşit olmayacaktır.

2. Şimdi ise 2x-14=(x-7).2 cebirsel ifadesine bir bakalım.

  • x yerine 3 koyalım.

2x-14=(x-7).2

2.3-14=(3-7).2

6-14=-4.2

-8=-8 doğru çıktı

  • x yerine 10 koyalım.

2x-14=(x-7).2

2.10-14=(10-7).2

20-14=3.2

6=6 yine sağ taraf sol tarafa eşit çıktı.

Bu şekilde devam ederseniz bütün sayılar için eşitliğin doğru çıktığını göreceksiniz.

İşte;

ikinci türde olduğu gibi; bir cebirsel ifade; bilinmeyenin yerine koyduğumuz her sayı için doğru çıkıyorsa buna; Özdeşlik denir.

Peki biz bütün özdeşlikleri bilmek zorundamıyız ?

Hayır;

Özdeşliğin ne anlama geldiğini bilin ve şu vereceğimiz bazı özdeşlikleri öğrenin yeter.

Aşağıdaki örneklere bakalım.

(Yukarıdaki örneklerde ilk bölüm özdeşliklerin formülüdür.

Altındaki kısımda ise her bir özdeşlikle ilgili örnekler verilmişti. )

  • Yukarıdaki 1. örnek, iki tane sayının toplamının karesidir.

Yani; iki sayı toplandıktan sonra karesi alınıyor. Biz bunu farklı şekilde de yazabiliyoruz.

1) bu sayılardan ilkinin karesini alıyoruz 2) birinci sayı ile 2. sayıyı çarpıp 2 katını alıyoruz 3) ikinci sayının karesini alıyoruz.

  • Yukarıdaki 2. örnekte ise, iki tane sayının farkının karesidir.

Bir üstteki örneğe benziyor, sadece aradaki 1. işaret – olacak

  • 3. örnekte ise iki sayının karelerinin farkı alınmış. Dikkat edin, önce kareleri alınıyor, sonra farkları alınıyor. Bu durumda bu cebirsel ifadeyi daha farklı nasıl yazabiliriz ?

Daha farklı yazmak istiyorsak, a ve b sayılarını bir çıkartıp bir toplayacağız. Sonra ise bunları çarpacağız.
YENİ ADRESİMİZ

www.matematikegitmeni.com 

Bugün 143863 ziyaretçi (318461 klik) kişi burdaydı!
=> Sen de ücretsiz bir internet sitesi kurmak ister misin? O zaman burayı tıkla! <=